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ABSTRACT

Calibration-based models for correcting estimates of land-cover proportions at a
series of scales produce varied results. A model based only on the scale-
dependent errors observed at the calibration site performs poorly because it
reflects only the error specific to the calibration site and therefore lacks generaliza-
bility. A model based on the coefficients of scale transition lines successfully
corrects error for large and small classes but does not perform as well for classes
of intermediate original size. Finally, a model based on matrices of scale-specific
interclass transitions or confusions produces the best results. This success prob-
ably occurs because the transition matrices carry some information about the spa-
tial characteristics of the landscape. The slope based model will probably general-
ize most successfully and would likely perform better with the explicit incorpora-
tion of measures of landscape spatial pattern.

INTRODUCTION

Effective modeling of Earth system processes depends on the accurate
knowledge of the nature, extent and location of land-surface cover at loud to glo-
bal scales. Models of biomass productivity and functioning, surface energy bal-
ance, hydrologic processes, chemical cycling and climate all incorporate some
representation of land cover to drive certain model components. Similarly, moni-
toring and management of Earth resources require reliable information about the
nature and extent of natural and human-induced land-cover transformations. The
scales at which land-cover data are needed, and the extent of regions undergoing
transformation suggest that monitoring land cover and land-cover change is most
effectively accomplished through synoptic, relatively small-scale mapping mis-
sions employing remotely sensed data.

The best current option for determining global land cover and land-cover
change involves the use of coarse spatial resolution, high temporal frequency data
such as that produced by the NOAAIAVHRR sensors. However, the accuracy
with which land cover and land-cover changes can be represented is directly
linked to the sampling scale. In the remote sensing situation, both the locational
accuracy as well as the proportional, or areal accuracy are influenced by increased
pixel size. The scale-dependence of accuracy is related not only to the spatial
resolution of the sensor, but to the interaction between the sensor resolution and
the spatial characteristics of the phenomenon being mapped. For monitoring rates
of processes such as tropical deforestation, areal accuracy is particularly critical.
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Likewise, if land-cover data are to be used as input to models of Earth systen
processes, the weal and thematic accuracy of those data are important relative t
locational accuracy. If accurate mapping of land cover and land-cover change
to be successful over large regions, it is necessary to improve techniques fo
extracting land-cover information from cmwse-scsle remotely sensed data, or t
develop methods for the a posteriori correction of land-cover area estimates.

In this research, we evaluate several methods for improving coarse-resolution
estimates of land-cover proportions using calibration based correction procedures
Scaling models developed for a calibration location are inversely applied to a tes
location and the models are evaluated with respect to their ability to improv
coarse-scale estimates of land-cover proportions for the test site. The calibration
and testing sites are the Plumas National Forest and the Stanislaus National Forest
respectively. Both are located in the Sierra Nevada Mountains in California an
are composed of the same basic cover types.

BACKGROUND

Efforts to map continental or global scale land cover using remotely sense
data have typically used time-series data from the NOAA-AVHRR (Advance,
Very High Resolution Radiometer) series of satellites at either 1.1 km or roughl
18 sq. km. resolution. Vegetation classification is based on time-series of max
imum value composite NDVI (Normalized Difference Vegetation Index) data b
either a) unsupervised clustering based on the temporal signatures (Townshend
al. 1987); b) clustering based on variables that are derived from the temporal sig
natures (Lloyd 1990); c) supervised classification in temporal space (brnbin,
press); d) decision tree classification based on predetermined criticat thresholds
NDVI and surface temperature values (Running et al. 1994; Lambin and Ehrlici
in press).

A variety of factors can lead to error in the results of classifications pe
formed in this way. One source of error is the interaction between the spatial pa
terns or the scales of variability in the landscape and the spatial resolution
which the landscape is being measured and represented (Woodcock and Strahle
1987; Townshend and Justice 1988). Consequently, the retrieval of area estimate
from coarse spatial resolution land-cover maps may be problematic. Thi
difficulty in part is due to the effect of spatial aggregation on land-cover propol
tions. Classes which dominate the original landscape will tend to be increasing.
over-represented as coarser resolutions are used to sample the landscape. COII

versely, small classes will be overwhelmed by the signal for the more dominau
classes, and will tend to disappear as the landscape is sampled at coarser scale
(Turner et al. 1989; Moody and Woodcock 1994; Moody and Woodcock, i
press). This general effect is modulated by other elements of landscape pattelm
specifically the level of aggregation of the classes and the adjacencies of differen
classes in the landscape (Turner et al. 1989; Moody and Woodcock 1994; Moods
and Woodcock, in press). This scenario discounts the influence of problems asso
ciated with spectral mixing, atmospheric effects and sensor response characters
tics.

Under the assumption that scale dependent error results solely from the spa
tial effects outlined above, it should be possible to model analytically the loss o
information with coarser resolution given enough information about the spat i
properties of the landscape (Turner et al. 1989). An alternative approach t
correcting proportional error in coarse resolution land-cover datasets is to develo
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empirical scaling relationships for small representative areas for which accurate
high resolution land-cover data are available. These scaling models can then be
inversely applied to other locations of the same general type for which only
coarse-scale data is available. Mayaux and Lambin (ii press) have experimented
with a related approach based on a linear model of a proportion-scaling relation-
ship between 30-m and 1 km data adjusted by a spatial pattern descriptor. In this
paper we test the performance of three distinctive calibration based methods at a
series of resolutions for a local scale test site.

METHODS

The calibration site is the Plumas National Forest in the Northern Sierra
Nevada Mountains in California. This is a 7320 aq. km. mountainous area with
high relief. ‘he vegetation is composed of shrub formations and pine and oak
woodlands at the lower elevations, mixed conifer and nparian hardwoods at inter-
mediate elevations, and mixed conifer combined with brush at higher elevations.
Brush and grasslands are distributed throughout the area and small rock outcrops
exist at high elevations. The test location is the Stanislaus National Forest. This
area is also located in the Sierra Nevadas roughly 1.5° south of the Plumas site and
its vegetation can be characterized in much the same way. Both sites have been
studied as part of a project to develop vegetation mapping and timber inventory
procedures for the U. S. Forest Service (Woodcock et al. 1993). Land-cover maps
have been produced using Landsat Thematic Mapper imagery and unsupervised
image classification supported by air-photo and field validation. cover chases
include gradbarren, brush, hardwood, conifer and water.

For both sites, the 30-m land-cover data was aggregated to a series of coarser
scales using a plurality-based aggregation procedure. For each coarser resolution
of interest, a grid is coded with the value of the most frequently occurring cover
class within each grid cell. Using this method, new maps were generated at 150,
240, 510 and 1020 meter resolution. Using the Plumas data, the relationship
between the 30-m land-cover proportions and the proportions at each coarser scale
were determined using three different methods. Each of these methods was then
applied to the coarse-scale estimates of cover-type proportions for the Stanislaus
and evaluated with respect to their ability to correct back to estimates of the actual
proportions as determined at 30-m.

The first method is termed Proportion Correction defined as:

Pi, – Pi.
Eir = p

10
(1)

where Eir is the proportion estimation error for class i at resolution r, Pir is the
measured proportion at resolution r, and Pio is the actual proportion of class i.
This measure of error is normalized to be relative to the original size of each indi-
vidual class, rather than relative to the entire scene. The equation for Eir can be
inverted to solve for Pw if a calibration based estimate of Eir exists. This rela-
tionship takes the form of

Pi~,
~iq = —

EirC+ 1 (2)

where ~io, is the estimated value of the true proportion for the test site t,and EirC

is the measured estimation error for the calibration site c. The calibration estima-
tion errors (Eir, ) for the Plumas Forest are presented in Table 1.

Table 1. Plumas National Forest estimation errors (~ir from q. 1) used for
the Proportion Correction (PC) of the coarse resolution Stanislaus Forest
proportion errors.

Estimation Errors

Class Types
Resolution

150 m 240 m 510m 1020 m

barren -34.60 -45.58 -60.91 -71.46
brush -8.79 -16.96 -30.83 -45.08
hardwood -8.04 -10.02 -12.67 -14.96
water 64.28 10.56 11.69 6.37
conifer 11.68 17.03 26.24 34.26

The second method is the Transition Correction defined as:

$.,= T,c * $,, (3)

where TrC is a class transition, or confusion matrix developed from the calibration

site, ~r, are the measured class proportions from the test site at resolution r, and
7., are the estimates of true class proportions for site t. The elements of matrix

TrC represent the percentage of each class which is classified at each of the other

classes at resolution r. The transition matrix (TrC) of the aggregated cover types at

1020 m resolution for the Plumas Forest is presented in Table 2. Following this
table, 64 percent of the 30 m pixels that are classified as barren after aggregation
to 1020 m are actually called barren at the original resolution. Roughly 20% of
those pixels were actually brush at the Original resolution. Similw cfllbrations
matrices were generated for each aggregation level for the Plumas Forest.

The third method is the Slope Correction and is based on a regression rela-
tionship between the correct and estimated cover-type proportions for the calibra-
tion site as follows:

Pir, - Pre
Pw, = ~,

c

(4)

where &C and mr, are the intercept and slope of the proportion transition line
developed from the calibration site at resolution r. FQure 2 shows the slopes of
regression lines relating initial proportions to proportions at coarser resolutions.
Each line is based on twenty values; five cover types for four subregions. The
slopes and intercepts from these lines are used to supply the values for ~r, and mrC

in Equation 4 for calculating the slope corrected values for the Stanislaus.

The success of each method was determined for each of the coarser resolu-
tions (150, 240, 510 and 1020 meters) using a measure of normalized Total Error
(TEtM~,) defind as follows:

$iq- Pw,
TEnormr =

41 I1= Pi~,
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where PiO, is the actual proportion of class type i for the test site t. This measure

normalizes the error based on the original size of the individual classes and treats I
.. .

all classes as equally important.

Table 2. Transition matrix representing pixel reassignment due to aggrega-
tion from 30 m to 1020 m resolution for the Plumas (calibration) site. This
mahix is used in the transition correction (TC) of the 1020 m Stanislaus
Forest proportion estimates. The transition between class types and
unclassified pixels, and vice versa, are not considered.

Comc)osition of Land-Cover Classes at 1020 Meters

Aggregated Cover Type
barren brush hwdwood water conifer
0.644 0.118 0.04) 0.068 0.039

Components

barren
brush
hardwood
water
conifer

0.196 0.491 0.154 0.060 0.174
0.053 0.122 0.520 0.047 0.127
0.007 0.003 0.004 0,645 0.003
0.092 0.245 0.277 0.179 0.643

Figure 2: Plumas Transition Lines
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RESULTS and DISCUSSION

Figure 1 shows the changes in proportions of the five cover types for the
Stanislaus Forest as the original 30m land-cover map was aggregated to the series
of coarser scales. For each cover type, the distance between its associated line and
the line below it represents the proportion of that cover type in the scene at the
resolution of interest. Note, in particular, small reductions in the proportions of
barren and hardwood, a moderate reduction for brusb, and a large increase for
conifer. Proportions for each resolution were calculated simply as pi” – Pir me

three correction methods described above were used to correct the coarser resolu-
tion proportions back to estimates of the original proportions at 30 m. As
described, each correction method was calibrated based on data from the Phrmas
Forest.

Proportional error (Pi,, - PiO,) based on the 1020 m Stanislaus proportion

estimates are shown in F3gure 3 for the uncorrected data and for the results of all
three correction methods. The symbols corresponding to the individual cover
types are displayed along the zero-line with respect to their original proportions.
Total error values are given for each method.

The Proportion Correction method performs well for water, hardwood and
conifer, but quite poorly for the barren and brush classes. This is the least gen-
eralizable method as it presumes that the test site behaves exactly as the calibra-
tion site on an individual class basis. This method does not account either for the
original proportions of the cover types in the test site, nor for the ways that dif-
ferent cover types interact spatially when scaling is performed.

The Transition Correction and Slope Correction methods both lead to consid-
erable improvements over the uncorrected estimates based on their total error

Figure 1: Stanislaus
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Figure 3: Proportional Error After Correction (1020m)” .Stani51aus
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values (2.07 and 3.86, respectively). The Transition Correction performs better
than the Slope Correction for hardwood and barren, while the Slope Correction
performs better for conifer and water. Both methods over-correct for conifer and
under-comect for barren and brush. The Slope Correction over-comecfi for hard-
wood and the Transition Correction over-comects for water.

It is probable that the Transition Correction method performs well because
the transition matrices carry information that is related to the relative size, spatial
pattern and typical adjacencies of the classes in the landscape. Cover types which
are spatially dispersed or disaggregate, such aa brush, will tend to have a low
value along the diagonal (correct classification) and will be redistribute among
other classes which are more highly aggregated spatially. This effect will in part
be modified by the original size of the class under consideration (Turner et al.
1989; Moody and Woodcock 1994). Similarly, there will be a high degree of tran-
sition between classes that tend to be adjacent to one another in the landscape. For
example, brush and conifer tend to be spatially associated in the Plumas Forest
which is reflected by the relatively high transition vatues between these two
classes in Table 2.

The Slope Correction method probably performs well because it is reflects the
generalizable relationship between class proportion and scale. That is, the slope of
the lines increase with scale in response to the tendency of small classes to get
smaller and large classes to get larger as the scene is aggregated. This general
relationship is moderated by spatial effects in the landscape (Turner et al. 1989;
Moody and Woodcock in press) and so will result in moderate errors when used to
correct proportions across a range of landscape types. In particular, this method
will perform poorly for classes of an intermediate size, such as barren and brush
in the Stanislaus dataset, where the general scaling relationship is most unstable.
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Figure 4 shows the changes in the total errors (77ZnOmr) of the different
methods as a function of resolution @q. 5). Very similar results occur when the
non-normalized veraion of T.E is used. The three comection methods all perform
fairly well at 150 m resolution. At coarser scales, the Proportion Correction
method degrades rapidly until it ultimately produces worse estimates than the ori-
ginal uncorrected data. The Transition Correction method proves to be the most
consistent performer, maintaining low ~~normr values across all resolutions. The

Slope Correction method falls between the other two methods, showing a
moderate increase in TEnOmr as resolution becomes coarser. These resulfi are

consistent with the discussion of F&we 3 above. That is, the Slope Correction
method, as a generalizable procedure, will typically perform moderately well and
will probably do so over a wide variety of landscapes. However, this method
incorporates no information that is specific to the spatial characteristics of the
landscape type in question and so will fail to do extremely well, even in two very
similar landscapes such as the Plumas and !Nanislaus National Forests. The Tran-
sition Correction method is more specific to the individual landscape and reflects
information about the spatial pattern. While this method does well in the case of
the two similar sites presented here, it is probably less extensible than the Slope
Correction.

Figure 4: Comparison of Correction Methods -Stanislaus
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CONCLUSIONS

The results suggest considerable potential for the development of calibration-
based models for correcting class-specific area estimates from coarse scale
datasets. This is significant for globat representation of land cover and for moni-
toring of land-cover change, especially when areal estimates are extracted from
such datasets. Models based on the estimation errors derived from the calibration
site are too specific to that site and therefore are non-generalizable. Transition
Correction is more successful, most liiely because it carries some degree of infor-
mation about the spatial patterns and relationships in the landscape. Slope based
models are probably the most generalizable because they reflect relationships that
will hold for most landscapes. However they could be improved with the addition
of variables that explicitly describe the spatial characteristics of the landscape,
such as aggregation, patch size or fractal dimension (Mayaux and Lambin, in
press). The incorporation of spatial measures may especially improve the correc-
tion of proportions for cover types which are of a moderate size in the landscape.
That is, in those cases where the general relationship (large classes grow and small
classes shrink with aggregation) does not hold, measures of spatial pattern may
help to resolve the scale-dependence of cover-type proportions. Proportion scal-
ing models, such as those presented here, also need to be tested over a broader
range of general landscape types to determine their potential extensibility.
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